How to reconstruct a large genetic network from n gene perturbations in fewer than n2 easy steps

نویسنده

  • Andreas Wagner
چکیده

MOTIVATION The reconstruction of genetic networks is the holy grail of functional genomics. Its core task is to identify the causal structure of a gene network, that is, to distinguish direct from indirect regulatory interactions among gene products. In other words, to reconstruct a genetic network is to identify, for each network gene, which other genes and their activity the gene influences directly. Crucial to this task are perturbations of gene activity. Genomic technology permits large-scale experiments perturbing the activity of many genes and assessing the effect of each perturbation on all other genes in a genome. However, such experiments cannot distinguish between direct and indirect effects of a genetic perturbation. RESULTS I present an algorithm to reconstruct direct regulatory interactions in gene networks from the results of gene perturbation experiments. The algorithm is based on a graph representation of genetic networks and applies to networks of arbitrary size and complexity. Algorithmic complexity in both storage and time is low, less than O(n(2)). In practice, the algorithm can reconstruct networks of several thousand genes in mere CPU seconds on a desktop workstation. AVAILABILITY A perl implementation of the algorithm is given in the Appendix. CONTACT [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to reconstruct a large genetic network from n gene perturbations in fewer than n easy steps

I present an algorithm to reconstruct direct regulatory interactions in gene networks from the effects of genetic perturbations on gene activity. Genomic technology has made feasible large-scale experiments that perturb the activity of many genes and then assess the effect of each individual perturbation on all other genes in an organism. Current experimental techniques can not distinguish betw...

متن کامل

Modeling gene regulatory networks: Classical models, optimal perturbation for identification of network

Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption.  On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications.  This is not an unrealistic goal since genes which are regulated by gene regulatory ...

متن کامل

Multivariate Feature Extraction for Prediction of Future Gene Expression Profile

Introduction: The features of a cell can be extracted from its gene expression profile. If the gene expression profiles of future descendant cells are predicted, the features of the future cells are also predicted. The objective of this study was to design an artificial neural network to predict gene expression profiles of descendant cells that will be generated by division/differentiation of h...

متن کامل

Multivariate Feature Extraction for Prediction of Future Gene Expression Profile

Introduction: The features of a cell can be extracted from its gene expression profile. If the gene expression profiles of future descendant cells are predicted, the features of the future cells are also predicted. The objective of this study was to design an artificial neural network to predict gene expression profiles of descendant cells that will be generated by division/differentiation of h...

متن کامل

Increasing the Power to Detect Causal Associations by Combining Genotypic and Expression Data in Segregating Populations

To dissect common human diseases such as obesity and diabetes, a systematic approach is needed to study how genes interact with one another, and with genetic and environmental factors, to determine clinical end points or disease phenotypes. Bayesian networks provide a convenient framework for extracting relationships from noisy data and are frequently applied to large-scale data to derive causa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 17 12  شماره 

صفحات  -

تاریخ انتشار 2001